Задание на всероссийскую и международную олимпиаду «Технологическая подготовка производства» Разработка процесса штамповки с использованием QForm

Задание

Моторный завод реализует план по сокращению затрат на производство комплектующих для нового насоса.

При производстве зубчатого колеса, придерживаясь рекомендациям стандартов, требуется спроектировать технологию с максимально возможным коэффициентом использования материала. Спроектируйте технологию штамповки на прессовой линии на базе одного из предложенных прессов (25 МН или 40 МН), учитывая особенности работы, ограничения по силе/энергии удара и габариты штампового пространства выбранной машины.

При моделировании в QForm спроектированного технологического процесса тип задачи обязательно должен быть - "2D осесимметричная".

Отчет

Составьте отчет, описывающий процесс выполнения задания и его результаты, включая расчёты, обоснования и выводы. Моделирование в QForm служит вспомогательным инструментом.

На титульном листе и в названиях материалов должен быть указан шифр работы. Фамилия, имя, университет, город и т.д. не указываются.

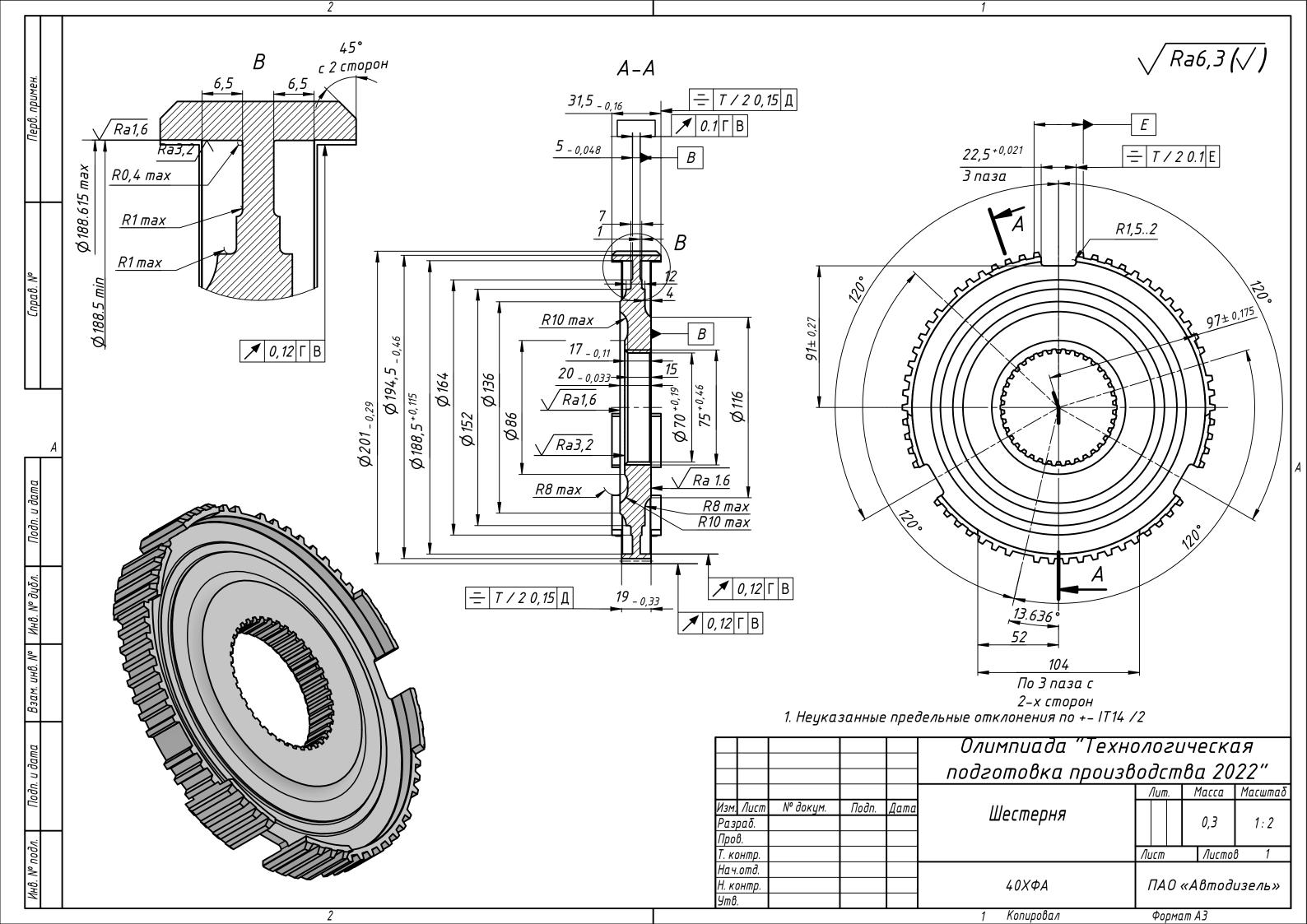
Оценка

На итоговую оценку работы влияют качество разработанной технологии и обоснованность принятых решений, в том числе: выбор оптимальной заготовки, выбор переходов штамповки (выбор количества операций, формы ручьёв, оценка материалоёмкости, силы деформирования и проч.), выбор оборудования (оценка производительности, силовых и энергетических параметров, габаритов штампового пространства), анализ возможных дефектов поковки, анализ износостойкости и прочности инструментальной оснастки, анализ НДС инструмента.

На выполнение задания отводится 6 часов. В результате выполнения работы должен быть создан архив (имя архива - шифр работы, выданный комиссией), содержащий отчёт и каталог с файлами моделирования QForm и единственный окончательный вариант моделирования технологии. Каждый отчет будет оцениваться согласно специальной таблице критериев. Список максимальных баллов за каждое задание представлено в таблице «Оценка работы» в конце задания. Пожалуйста обратите внимание, задание считается выполненным, если отчет содержит описание ее выполнения. Окончательная сумма баллов за выполненное задание умножается на коэффициент технологии, который оценивает качество и правильность результатов моделирования и коэффициент плагиата (допускается 50% плагиата).

Параметры штамповочных кривошипных прессов

Номинальная сила, МН	25	40
Ход ползуна, мм	350	400
Максимальная частота ходов пресса, <u>мин</u>	70	50
Частота одиночных включений, $\frac{1}{_{\text{мин}}}$	20	14
Размер стола, мм	1280x1400	1710x1620
Отношение радиус кривошипа / длина шатуна	0.17	0.15


Параметры вырубного кривошипного пресса

Номинальная сила, МН	2.5
Ход ползуна, мм	25200
Максимальная частота ходов пресса, $\frac{1}{_{\text{мин}}}$	61
Частота одиночных включений, $\frac{1}{_{\text{мин}}}$	26
Размер стола, мм	1120x750
Отношение радиус кривошипа / длина шатуна	0.17

Оценка работы

Рекомендуемый список позиций выполнения задания и соответствующий максимальный балл приведены в таблице. Окончательное количество баллов по каждой позиции определяется с помощью коэффициента качества: хорошо = 1, средне = 0.66, плохо = 0.33, не сделано = 0.

Пункт выполненного задания	Баллы
Расчет количества переходов	3
Расчет производительности	2
Расчет горячей поковки	11
Оценка температурного диапазона в заготовке	3
Оценка температурного диапазона в инструменте	3
Оценка заполняемости ручья	4
Оценка силовых и энергетически параметров процесса	4
Оценка влияния изменения размеров заготовки на заполняемость	5
Оценка заполняемости мостика облойной канавки	2
Оценка возникновения в заготовке складок	2
Оценка поля минимальной дистанции	2
Анализ дефектов в заготовке с использованием поля Gartfield	4
Оценка волокнистого строения в заготовке	4
Оценка позиционирования заготовки во всех ручьях	4
Анализ мест возможного разрушения в штампе	4
Оценка усталостного разрушения штампов	3
Оценка влияния составного инструмента	3
Разработка конструкции штампа	5
Оценка износа штампа	3
Оценка габаритов штампа и рабочего пространства оборудования	4
Обоснованная оптимизация технологии (до 3-х параметров)	5
Дополнительные баллы за эффективность технологического процесса	010
Итого	100

